A Bayesian Shrinkage Model for Incomplete Longitudinal Binary Data with Application to the Breast Cancer Prevention Trial.

نویسندگان

  • C Wang
  • M J Daniels
  • D O Scharfstein
  • S Land
چکیده

We consider inference in randomized longitudinal studies with missing data that is generated by skipped clinic visits and loss to follow-up. In this setting, it is well known that full data estimands are not identified unless unverified assumptions are imposed. We assume a non-future dependence model for the drop-out mechanism and partial ignorability for the intermittent missingness. We posit an exponential tilt model that links non-identifiable distributions and distributions identified under partial ignorability. This exponential tilt model is indexed by non-identified parameters, which are assumed to have an informative prior distribution, elicited from subject-matter experts. Under this model, full data estimands are shown to be expressed as functionals of the distribution of the observed data. To avoid the curse of dimensionality, we model the distribution of the observed data using a Bayesian shrinkage model. In a simulation study, we compare our approach to a fully parametric and a fully saturated model for the distribution of the observed data. Our methodology is motivated by, and applied to, data from the Breast Cancer Prevention Trial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

A Bayesian Approach to Estimate Parameters of a Random Coefficient Transition Binary Logistic Model with Non-monotone Missing Pattern and some Sensitivity Analyses

‎A transition binary logistic model with random coefficients is‎ ‎proposed to model the unemployment statues of household members in‎ ‎two seasons of spring and summer‎. ‎Data correspond to the labor‎ ‎force survey performed by Statistical Center of Iran in 2006.‎ ‎This model is introduced to take into account two kinds of‎ ‎correlation in the data one due to the longitudinal nature o...

متن کامل

H-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data

Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...

متن کامل

Extracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem

Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 105 492  شماره 

صفحات  -

تاریخ انتشار 2010